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Abstract: This paper presents a new multilevel optimization algorithm for layout-aware 

synthesis of analog systems. The synthesis methodology integrates (1) block parameter 

search, (2) block placement, and (3) global interconnect routing while maintaining an 

accurate perspective about layout parasitic. Multilevel optimization conducts a sequence 

of exploration steps, in which each step uses performance models of superior accuracy 

(with respect to the previous steps), while searching reduced parameter domains. The 

paper defines original algorithms for design parameter abstraction, abstraction error 

evaluation, and design space pruning. Theoretical and experimental results show a 

superior convergence of the multilevel algorithm ascompared to flat exploration. 

Execution time is also much improved without trading-off quality.  
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1. INTRODUCTION 

 

The need for mixed-signal designs is predicted to 

dramatically increase in the near future (Gielen, 

2000). The digital part of mixed-signal systems can 

be efficiently designed with a low effort using 

modern high-level, logic-level, and physical-level 

design automation tools. In contrast, there is a lack of 

synthesis environments for analog circuits (Gielen, 

2000). As a result, analog designs continue to seize a 

considerable portion of the design time of mixed-

signal systems. There is a persistent need for 

synthesis tools to level design productivity and 

quality of analog circuits. This paper presents a novel 

method for analog system synthesis under close 

observation of layout parasitic. 

 

Existing CAD methods for analog circuits mainly 

focus on layout generation (Cohn, 1991, Lampaert, 

1999, Malavasi, 1996) and circuit sizing (Dhanwada, 

1999, Krasnicki, 1999, Kruiskamp, 1995, 

Hershenson, 2001). Layout design tools follow an 

optimization-based place-and-route approach, in 

which layout is generated by an optimization process, 

e.g., simulated annealing, genetic algorithms etc. 

driven by a cost functions expressing criteria, such as 

performance degradation, total wire length, area, and 

so on (Cohn, 1991, Lampaert, 1999). However, it is 

possible that the fixed transistor sizes do not leave 

enough performance margins to accommodate 

layout-induced performance degradations. In this 

case, the final design is incorrect. Costly re-iterations 

through circuit sizing and layout generation are 

needed to get constraint satisfying designs. 

 

Circuit sizing techniques find the transistor 

dimensions that optimize the performance 

requirements expressed by the designer (Krasnicki, 

1999, Kruiskamp, 1995, Hershenson, 2001, Ochotta, 

1996). Hershenson et al. (Hershenson, 2001) propose 

GPCAD environment, which optimally sizes 

transistors using geometric programming methods 

and performance models expressed as posynomial 

functions. MAELSTROM (Krasnicki, 1999), among 

others, employs genetic algorithms and SPICE 

simulation for transistor sizing. A main limitation of 

traditional circuit-sizing methods is the assumption 

of having minuscule layout parasitic, so that it can be 

disregarded. This is not, however, the case for many 

applications (Crols, 1995, Dessouky, 2001, Hastings, 



2001, Vancoreland, 2001). Layout-induced parasitic,  

i.e. interconnect parasitic and device couplings 

through substrate, have a significant impact on 

performances of high-speed, high accuracy analog 

and RF circuits (Hastings, 2001). Performances of 

these circuits, after layout-parasitic extraction, might 

not meet the constraints. A tight integration of system 

synthesis and layout design is compulsory for having 

realistic estimations of layout parasitic. 

 

A possible layout-aware synthesis approach would be 

to combine the sizing and layout design steps as part 

of the same exploration loop. This strategy is called 

flat exploration. The main difficulty of this 

methodology is its poor convergence due to the many 

variables that need to be simultaneously optimized 

over large domains of values. A typical example such 

as the 6-th order filter involves around 190 variables. 

Similar to other work (Dhanwada, 1999), our 

experiments with flat exploration methods showed 

poor convergence and long exploration times for a 

significant number of applications. Krasnicki et al. 

(Krasnicki, 1999) propose a distributed genetic 

algorithm to tackle the complexity of the solution 

space. While offering speed-up, this approach does 

not address the poor convergence of typical heuristic 

algorithms for problems with large number of 

variables. 

 

This paper presents an original multilevel 

optimization algorithm for synthesis of analog 

systems. The algorithm performs combined block 

parameter search, block placement, and wire routing 

under strict observance of layout parasitic. To 

address the large complexity of the solution space, 

the algorithm conducts a sequence of optimization 

steps, where each step uses performance models of 

superior accuracies (with respect to the previous 

steps), while searching reduced parameter domains. 

Accuracy differs because distinct number of 

parameters is used in the models. The first 

optimization step starts with the coarsest 

performance models, thus having the least number of  

parameters. Based on the approximation error of the 

models, this step prunes unattractive parameter sub-

spaces. The pruning criterion was defined such that 

eliminated subspaces do not include attractive design 

solutions, even if detailed models were used.  Then, 

multilevel optimization proceeds with (1) gradually 

considering performance models with superior 

accuracies (thus, involving more parameters), while 

(2) searching parameter values located in the 

contracted domains. Domain contraction is due to 

pruning. To motivate the effectiveness of the method, 

the paper presents design examples for which flat 

exploration offered poor solutions, but which were 

successfully handled by multilevel optimization. 

 

The theoretical core of the multilevel optimization 

algorithm is based on global nonlinear optimization 

(McCormick, 1983, Walshaw, 2001). The originality 

of the paper consists in refining the mathematical 

theory for the context of analog synthesis. We define 

criteria and algorithms for design parameter 

abstraction, abstraction error evaluation, and space 

pruning. The paper stresses on the theoretical aspects 

of the algorithm, as preserving optimality during 

multilevel optimization is critical. The convergence 

of the algorithm is superior to that of flat exploration. 

Execution time is also much improved. 

 

Recently, there has been effort to combine transistor 

sizing with layout design. Vancorenland et al. 

(Vancorenland, 2001) discuss a layout-aware 

transistor sizing method for RF circuits. A layout 

template is assumed for a given circuit. Transistor 

dimensions are flexible in the template, but the 

placement and routing of the devices is already 

decided. Dessouky (Dessouky, 2001) proposes a 

similar approach. This technique is well suited for 

predefined circuits, like mixers. However, if a new 

application is targeted or a new circuit topology is 

contemplated, it will take a large designer effort to 

prepare the knowledge needed for synthesis. Our 

method is not limited to one application type as 

placement and global routing are part of synthesis. 

 

This paper is organized as follows. Section 2 

motivates the proposed multilevel optimization 

algorithm. Section 3 details the theoretical basis for 

the method. Section 4 introduces the synthesis 

methodology and algorithms. Experiments are shown 

in Section 5. Finally, Section 6 provides conclusions.   

 

 

II. MOTIVATION 

  
Fig.1 Variables with dominant and reduced influence 

 

The main practical difficulty of synthesis through flat 

optimization is the large number of variables that 

need to be simultaneously explored over extensive 

domains of values. For example, designing a 6-th 

order filter up to the layout involves optimizing 

around 196 real-domain variables (48 variables 

describe OpAmp constraints, 6 variables are for 

capacitors, 30 variables are for resistors, 48 variables 

express placement, and 64 variables are for routing). 

From the point-of-view of an optimization algorithm, 

the large number of variables increases the size of the 

neighborhood sets, as many incremental changes can 

be defined for each iteration. Secondly, many 

exploration steps need to be performed to reach an 

optimal solution from a given solution point. This 

decreases the rate of convergence of the exploration 

algorithm. In fact, it is very likely that many of the 

local optima are never reached during the search. 



Parallel and multilevel exploration methods are two 

orthogonal ways to tackle these difficulties. 

 

Parallel optimization algorithms divide the variable 

domains into subsets, and allocate each solution 

space region to a different processor (Reeves, 1993). 

Assuming that there exists true data parallelism for 

the synthesis problem, a theoretical speed-up of m is 

achieved by using m processors as compared with 

flat optimization. Real speed-up is smaller, as data 

(local optima) need to be constantly exchanged 

between processors. While offering speed-up, the 

main limitation of parallel optimization algorithms is 

the extra hardware and software cost they require. 

 
Fig. 2 Third-order elliptic filter 

 

Multilevel optimization addresses the problem of 

solution space complexity by distinguishing the 

search variables based on their impact on the 

optimization and constraint functions. Using the 

transfer function of a system or designer knowledge, 

variables are grouped into (1) variables with 

dominant influence and (2) variables with reduced 

influence. Sensitivity analysis can be used to identify 

variables with dominant influence.  

 

For the elliptic filter in Figure 2 (Ray, 2002), Figure 

1 shows the variables with dominant and reduced 

influence. The transfer function of the filter is  
 

H(s)=[gm1gm2gm3-gm1C2C3ϖ
2]/[gm1gm2gm3+ gm2gm3gm4 

+gm1C2C3 ϖ2+ (gm2gm3C_1 - C1C2C3 ϖ
2) s] (Ray, 2002). 

 

The left graph in Figure 1 presents the filter 

amplitude as a function of frequency and gain gm1. 

The right graph in Figure 1 shows the filter amplitude 

as a function of frequency and gain gm1, if the 

transfer function is approximated to H'(s) = (gm1) / 

(gm1 + C1 s). This is a reasonable approximation for 

the frequency range f ∈ (1,10
8
) Hz. Note that 

function H'(s) preserves the shape of the original 

function H(s), such that optima are located in the 

same region. Thus, variables gm1 and C1 have a 

dominant influence.  

 

Multilevel optimization concentrates first on 

addressing the variables with dominant influence. 

The number of searched variables is significantly 

reduced as compared to flat optimization, because 

variables with reduced influence are abstracted. The 

exploration process isolates regions, which are 

attractive (e.g., they contain good local optima), and 

prune non-competitive regions (e.g., their local 

optima are much worse then the optima of other 

regions). Then, abstracted variables are gradually 

introduced-back to the exploration space. However, 

the exploration algorithm focuses only on the 

attractive regions, thus, on a smaller space. This 

strategy improves the convergence of the 

optimization without perturbing the quality of the 

search. For the discussed example, multilevel 

optimization first explores the dominant variables 

gm1 and C1 over their entire domain to identify the 

space regions where the filter response is 

satisfactory. For example, the region for gm1 < 0.3 

µA/V is pruned as the cost is high. Then, reduced 

influence variables are gradually re-introduced into 

the estimation model, while exploration concentrates 

on the attractive regions found during previous 

exploration steps. Through intelligent search, 

multilevel optimization speeds up execution and 

improves convergence without using more hardware 

and software resources than flat exploration. 

 

III. MULTILEVEL OPTIMIZATION 

 
Fig. 3 Multilevel optimization 

 

Using the concept of dominant and reduced influence 

variables, Figure 3 offers an intuitive description of 

multilevel exploration. Lets assume that the function 

z = f(x, y) is to be optimized. Assuming that variable 

y has a reduced influence for a tolerable error, an 

approximation z' = f'(x) of function f is obtained by 

abstracting variable y. Figure 3 shows the curve of 

the abstracted function f'. Function f' is used to 

identify attractive regions of the solution space, and 

prune less promising regions, as shown in Figure 3. 

 

A subsequent exploration step will explore for the 

optima of the initial function f by concentrating the 

search on the attractive regions found during the first 

step. This section discusses the theoretical foundation 

of the multilevel optimization algorithm. 

 

3.1 Dominant and reduced influence variables, 

approximation errors, attractive and pruned regions 

 

Definition: Variable xi ∈(x
min

i, x
max

i) has a reduced 

influence on function F(x1, ... ,xn) with respect to the 

approximation error ε > 0, if for any constant x
c
i ∈ 

(x
min

i, x
max

i), the relationship ||F(x1,x2,..., xi, ... ,xn) - 

F(x1,x2,..., x^
c
i, ... ,xn)|| < ε holds. Variable xi has a 

dominant influence on F(x1, ... ,xn) with respect to 

error ε > 0, if it has not a reduced influence. 

 

For the filter in Figure 2, variables gm1 and C1 have a 

dominant influence, and variables gm2, gm3, gm4, C2, 

C3, and the layout parasitic have a reduced influence.  

 



The error range introduced by eliminating a variable 

from function F, can be estimated based on the 

function and the variable domains of F. We assume 

that function F(x1,...,xn) has bounded first order 

derivates (∂F/∂ xi ∈ (L
min

i, L
max

i), and xi ∈ (x
min

i, 

x
max

i), which denotes its feasibility range. Values 

x
min

i, x
max

i > 0, because they are physical dimensions. 

 

Lemma: The error ε introduced by eliminating 

variable xi from function F is ε ∈ (min {L
min

i × x
min

i, 

L
min

i × x
max

i}, max {L
max

i × x
max

i, L
max

i × x
min

i}). 

 

Proof: The elimination of xi assumes that ∂ F /∂ xi in 

the Taylor series of F disappears, which results in the 

mentioned approximation error. The lemma 

considers the cases where bounds L
min

i and L
max

i can 

be both positive and negative. 

 

Definition: For a given a permutation σ (m) of m 

numbers in the set {1, ..., n} , F
σ (m)

 (x1,...,xn) is the 

function obtained through eliminating variables xi, 

where indexes i are defined and appear in the same 

order as the integers in the permutation σ(m).  

 

For example, if σ(3)={3, 1, 4} then F
σ (3)

 (x1,...,x5) is 

the function obtained after eliminating x3, x1 and x4. 

 

Lemma: For a given a permutation σ (m), the error of 

the corresponding abstraction is ε = ||F
σ (m)

 (x1,...,xn) - 

F(x1,...,xn)||  ∈ (∑σ(m) min {L
min

i × x
min

i, L
min

i × x
max

i}, 

∑σ(m) max {L
max

i × x
max

i, L
max

i × x
min

i}). 

 

Proof: Proof is based on the cumulative effect of the 

errors introduced by each variable abstraction. 

 

Lemma: Let ε1 ∈(L
min

, L
max

) be the approximation 

error of F
σ (m)

. Point o1 is assumed to be the unique 

local minimum of F
σ (m)

 for the subspace R1. Point o2 

is assumed to be the unique local minimum of F
σ (m)

 

for the subspace R2. Without loosing optimality, 

subspace R1 can be pruned from the search space, if 

o2 < o1, and o1 + L
min

 > o2 + L
max

. 

 

Proof: Refer to Figure 3 for an illustrative example. 

The intuition behind the proof is that point o1 is 

worse than point o2 by a margin greater than the 

maximum error introduced through the abstraction. 

Thus, point o1 cannot become better than point o2 

under any circumstances. 

 

This lemma is very important for stating the 

conditions under which space pruning can be 

conducted without affecting optimality. 

 

3.2 Multilevel optimization through variable 

approximation and space pruning 

 

Figure 4 presents the pseudo-code of the multilevel 

optimization algorithm. The multilevel synthesis 

strategy can be defined for any number of levels. The 

strategy starts from a detailed optimization and 

constraint functions and the complete solution space 

SP. Then, the technique classifies free variables into 

those with dominant and reduced influence (lines 2-

4). A sequence of variable abstractions is defined 

after this step (line 5).  

 

The second part conducts a sequence of explorations.  

It starts with the most comprehensive abstraction 

(line 6), identifies attractive regions, and prunes non-

optimal zones. Lets assume that subspaces R1 and R2 

are isolated during the search, each of them 

containing one local optima (thus the function is 

convex over Ri). Point oi is the local optimum for 

region Ri, i=1,2. If o1 + L
min

 > o2 + L
max

, subspace R1 

can be pruned without altering the optimality of the 

problem. Range (L
min

, L
max

) is the approximation 

error of the current performance model. Region R2 is 

an attractive region, and region R1 is a pruned region. 

By extending the reasoning for the entire solution 

space, the strategy isolates a set of attractive regions 

(line 9). Using the sequence of variable abstractions, 

the algorithm identifies the next refinement in the 

sequence (lines 10-11). The exploration process is 

repeated using the refined function defined over the 

set of attractive regions (line 8). The last iteration 

performs an exploration of the attractive regions 

using the non-approximated model. 

 
PROCEDURE multi_level optimization IS  

INPUT:  

   F - function to be optimized  

   Di- domain of free variable xi 

   ε - maximum approximation error 
BEGIN 

(1) SP = D1 U D2 U ... U Dn; 

(2) for all free variables xi do 

(3)   evaluate the approximation error 

       introduced by abstracting xi in F; 

     end for 

(4) identify the set S of variables xi 
      that can be abstracted so that the 

      resulting total error < ε; 
(5) order variables xi in set S in 

      decreasing order of their dominance; 

(6) F' = F
σ (i | xi∈S)

(x1, ..., xn); 

(7) AR = SP; 

(8) for all xi ∈ S, in their order in S do 
(9)       AR = identify the attractive sub-spaces of AR by exploring 

                        F' and pruning unattractive subspaces; 

(10)      S = S - xi; 

(11)      F' = Fσ (i | xi ∈ S)(x1, ..., xn); 

           end for  

END PROCEDURE 

Fig.4 Multilevel optimization method 
 

Lemma: The multilevel optimization algorithm finds 

the global optimum, if pruned regions are convex. 

 

Proof: As pruned regions are convex, they have a 

single local optimum. Optimality is preserved due to 

the lemma in Section 3.1. 

 

3.3 Discussion 

 

The speed-up of multilevel optimization with respect 

to flat optimization depends mainly on the number of 

variables that are approximated, and less on the 



solution space reduction through pruning. The 

motivation assumes that variables in function F(x1, 

..., xn) can be abstracted through a set of m steps, each 

step abstracting k variables. Also, lets assume that 

each iteration decreases the size of the solution space 

by a factor of q, q > 1. Finally, the complexity of the 

algorithm to identify the local optima over a space of 

dimension d is assumed to be of the order O(d
p
). Lets 

assume that the most abstract function has n variables 

(the first abstraction in the sequence). Finally, we 

assume that each variable domain has the size l. 

 

A flat exploration process has complexity CP1 = O((n 

+ k × m × l)
p
). The multilevel exploration process 

has complexity CP2 = O((n × l)
p
) + O(((n + k) × 

l/q)
p
) +  (((n + 2 × k) × l/q

2
)

p
) + ... + O(((n + m × k) 

× l/q
m
)

p
). The inverse of the speedup is CP2/CP1 = 

∑i=0
m
 ((n + i × k)/(n + m × k))

p
 × 1/q

ip
. The first term 

has the most dominant influence on the speed-up. 

Thus, to maximize speed-up the first term should be 

minimized, which corresponds to aggressive variable 

abstraction rather than forceful domain reduction. 

 

We considered a set of numerical examples to 

evaluate the resulting speed-ups. In the initial case, 

n=40, m=3, k=3, p=5, q=4/3. This example 

corresponds to the second order filter example. Local 

optima are identified with a polynomial algorithm of 

complexity O(n
5
) (reasonable for an optimization 

heuristics like tabu-search). The estimated speed-up 

through multilevel optimization is around 1.8. If a 

more aggressive parameter abstraction procedure 

were to be used, such as n=20, m=4, k=5, p=5, q= 

4/3, speed-up increases to about 13. If the pruning of 

less attractive regions is more efficient, e.g., n=40, 

m=3, k=3, p=5, q=2, then speed-up is around 2.56. 

This offers a numerical explanation for the statement. 

 

This discussion suggests that multilevel optimization 

tends to be more effective in space exploration than 

parallel implementations. Parallel implementations 

realize a decreasing of the factor l, which is not part 

of the speed-up formula. Nevertheless, smaller size 

spaces tend to increase the value of q. The impact on 

speed-up is probable less than for parallel 

implementations. A parallel realization of the method 

in Figure 4 further speeds-up optimization. 

 

 

IV. SYNTHESIS METHODOLOGY 

 

Figure 5 illustrates the proposed layout-aware 

synthesis method. The methodology is an 

instantiation of the multilevel algorithm in Figure 4. 

It performs multilevel exploration for integrated (1) 

block parameter search, (2) block placement, and (3) 

global signal routing. System architectures are given 

as inputs. Architectures are netlists of active circuits 

i.e. OpAmps, OTA etc. and passive elements like 

resistors and capacitors. Figure 2 shows a sample 

architecture. The output consists of a sized, placed 

and routed architecture that realizes the required AC 

and transient behavior (like in Figure 10).  

 

The methodology debuts with the step of finding 

dominant and reduced influence variables. This 

corresponds to lines 2-5 in Figure 4. The step 

calculates symbolic expressions for the performance 

attributes of a system. The models incorporate 

parameters such as OpAmp (OTA) gains, dominant 

poles, input/output impedances, resistor and capacitor 

values, and interconnect parasitic. Compact linear 

symbolic models are built using the method 

presented (Doboli, 2001). A feasibility range 

describes each of the architecture parameters. The 

variable abstraction step uses the symbolic models 

and feasibility ranges to calculate the error 

introduced by eliminating each variable. Then, 

variables are clustered, so that each cluster results in 

the same approximation error. The error per cluster is 

an input parameter to the algorithm. The variable 

clustering method considers parameters in the 

increasing order of the introduced error. Thus, initial 

clusters will include more variables than the latter. 

As motivated by the discussion in Section 3.3, this 

strategy offers the best speed-up for the multilevel 

optimization, because it allows quick pruning of 

unattractive subspaces. Subsection 4.1 more details 

on the variable abstraction method. 

 

The next part instantiates lines 6-11 in Figure 4 for 

layout-aware analog synthesis. The initial exploration 

is conducted using the maximum variable 

elimination, thus models with highest approximation 

errors. Successive exploration re-introduces variables 

according to the clustering found by the variable 

abstraction step. The actual exploration algorithm is 

based on the tabu-search method (Reeves, 1993). 

Subsection 4.2 discusses the design steps performed 

by tabu-search. 

 

Using layout parasitic modeling (Hastings, 2001), 

and technology-dependent values for the parasitic 

resistance and capacitance per unit length, a SPICE 

description of the circuits is generated. This circuit 

includes layout parasitic. AC and transient 

performances are obtained for each solution through 

SPICE simulation. Performances are used to 

calculate a cost function C, which controls the 

exploration algorithm for synthesis. 
C = ∑i αi × ||(Performance

obtained
i-

Performance
desired

i) /Performance
desired

i|| +  

β × Areasystem 

 

Cost function C is the weighted sum of the relative 

error for performance parameters (i.e. DC Gain, 3db 

Bandwidth etc.) and the silicon area of the design.  

Each exploration level identifies attractive 

exploration regions and prunes unappealing sub-

spaces. Subsection 4.3 discusses this task. Attractive 

regions are used by the subsequent explorations that 

involve more design parameters. 

 



 
Fig. 5 System synthesis methodology 

 

4.1. Identification of Dominant and Reduced 

Influence Variables Through Abstraction 

 

The variable abstraction sequence is constructed in a 

greedy way. First, the method calculates for each 

variable the error resulting, if the variable is 

eliminated from the model. The variable that offers 

the smallest error is introduced first into the 

abstraction sequence. This variable has a reduced 

influence. An abstraction of the initial function is 

obtained after eliminating the variable. Then, this 

function abstraction is used to identify the variable 

with the next smallest error. A new abstraction is 

built after eliminating this variable. The algorithm 

ends when the resulting error higher than a specified 

error. Variables that were not abstracted have a 

dominant influence.  The abstraction sequence is 

used to cluster the variables, so that each cluster 

results in the same approximation error. Note that the 

greedy strategy balances between an aggressive 

variable elimination and the effectiveness of solution 

space pruning. More aggressive abstraction increases 

the error range, thus, reduces the possibility for 

pruning. However, as shown in Section 3, variable 

abstraction offers better speed-ups than pruning. 

 

The approximation error calculation finds the error 

resulting after eliminating variable xi from the 

optimization and constraint functions of a system. 

The error is bounded considering that the function 

variables are bounded too. We propose an 

approximation error calculation scheme, which uses 

the symbolic expressions of the system performances 

and constraints. Symbolic expressions are used for 

range calculation through operations on intervals. 

 

4.2. Design Exploration 

 

At each iteration, the tabu-search algorithm explores 

three design steps that are shown in Figure 6:  

• Block parameter search is achieved by changing 

dimensions h and w of the active part of the 

layout tiles for a block. This step is presented in 

Figure 6(a). For example, the values of 

resistances and capacitances change to improve 

the AC performances of a filter, like its 3dB 

bandwidth. For resistors, resistances depended 

on the area according to the formula Rseg = 

ρl/(wt). For capacitors, capacitances depend by 

the expression Cseg = εoxwl/tox. For OpAmps, we 

assumed a fixed but sufficient DC gain of 60dB 

and a fixed slew-rate (SR) of 1.6 V/µs. 

Following model links the UGF of an OpAmp to 

its area AreaOpAmp=171.91×UGF
0.2875

× SR
0.1688

.  

• Block placement is addressed by moving one 

block or swapping two blocks. As a result, the x 

and y coordinates of the tile corner points for the 

involved blocks are changed to reflect the new 

situation. Figure 6(b) shows the swapping of 

Block 1 and Block 2. The produced overlapping 

is solved as shown in the right part of Figure 

6(b). Affected nets are re-routed after each 

change of block positions. 

• Global routing is the process of finding an 

ordered sequence of channels, so that source and 

target terminals are linked together. The 

algorithm randomly picks a channel P in the 

sequence. The subsequence from the source 

terminal to channel P remains the same. The 

sequence from P to the target pin changes to 

include a different global route. Block terminals 

are assumed to be fixed on a given side of their 

rectangle layout block. Exploring for good 

terminal positions will extend our current work.    

 
Fig. 6 Layout-aware block parameter exploration, 

placement, and global routing 

 

4.3. Attractive Sub-space Identification. Pruning 

 

Section 3.2 motivates that the global optimality of 

multilevel exploration is preserved, if pruned sub-

spaces are convex. Establishing the convexity of a 

subspace is, however, difficult (McCormick, 1983). 

Instead, we approximate the convexity subspace 

identification problem by the condition that the 

sampled points form a convex envelope. This 

approximation criterion does not mathematically 

guarantee the convexity of the subspace, thus, other 

local optima might be located between the sampled 

points. This section offers a criterion to estimate the 



amount by which the sampled optimum might differ 

from the real local optimum. 

 

Figure 7 shows the subspace identification procedure. 

The sequence of points x0, x1, ..., x7, x8 corresponds to 

a convex envelope, and is detected during tabu-

search exploration. Lets assume that x0 is the current 

point under investigation. Tabu-search attempts at 

each step at changing each of the parameters 

(variables a and b in Figure 7). Point x1 offers the 

best improvement of the cost function, if only one of 

the variables is changed. Similarly, the sequence of 

points x2, x3 is produced until reaching the point x4, 

which acts as a local optimum for the sampled points. 

The sequence of points x5, x6, x7, and x8 corresponds 

to the increasing slope of the convex region, 

generated during tabu aspiration (Reeves, 1993).  

 
Fig. 7 Sub-space identification 

 

The subspace represented by the sampled points x0, 

x1, ..., x7, x8 is described by the product SSP = (a
min

, 

a
max

) ×  (b
min

, b
max

), where a
min

 = min (x0.a, ..., x8.a), 

a
max

 = max (x0.a, ..., x8.a), b
min

 = min (x0.b, ..., x8.b), 

and b
max

 = max (x0.b, ..., x8.b). xi.a indicates 

parameter a of the point xi, and xi.b is parameter b of 

the point. The cost function of point x4 approximates 

the local optimum of the subspace SSP.  The 

procedure can be easily generalized for n parameters. 

 

Lemma: For the subspace SSP, let fo be the local 

optimum and fa the optimum found through the 

presented sampling method. Let M be the maximum 

value of the derivate of the cost function, and ε the 

approximation error due variable elimination. Then,  

|| fo - fa || < ε, if ∆parameter = ε/M.   

 

Proof: The formula results from the Taylor expansion 

of f. Intuitively, the lemma states that the parameters 

need to be varied with small steps, if the function has 

large variations, and with large steps, if the function 

has reduced variations. Under these conditions, the 

local optimum will be within a radius ε from the 

optimum point fa found by the sampling process.  

 

V.EXPERIMENTS 

 

Experiments observed the effectiveness of our 

method in synthesizing high-frequency systems. The 

results were analyzed based on the quality of AC 

responses and layout compactness. The accuracy of 

the parasitic modeling was also considered. A third 

order elliptic filter and a sixth order low-pass filter 

are shown in the paper.  

 
Fig. 8 AC response of the 12MHz elliptic filter 

 

Experiments were run on a SUN 80 workstation. The 

optimization of the 3-rd order filter needed about 300 

iterations and 3 hours. The 6-th order filter required 

about 1000 iterations and 20 hours.   

Fig. 9 3rd order elliptic filter layout 

 

The third order elliptic low-pass filter was 

synthesized for a 3-dB bandwidth at 12 MHz. 

Following values resulted for the components: 

C1=9.9pF, C2=90fF, C3=180fF, gm1=408 µA/V, 

gm2=387µA/V, and gm3=400µA/V. Parasitic 

capacitances of wires have the same range of values 

as capacitors C2 and C3. This motivates the need for a 

combined sizing, placement, and routing. Figure 8 

presents the frequency response of the filter. For the 

specified bandwidth, note the good resemblance 

between the specified and obtained AC response. The 

response was worse for the filter designed through a 

traditional method, which separated component 

sizing, placement, and routing. The 3dB point was 

shifted by about 3MHz. This indicates the impact of 

layout parasitic on the performance of the design, and 

thus, the need for contemplating parasitic and 

coupling effects during synthesis. Figure 9 shows the 

layout of the filter. The layout is fairly compact 

 

The convergence for flat exploration was poor. The 

cost function oscillated without finding reasonable 

solutions. In our experiment, after 120 hours, the flat 

synthesis was still not converging. The proposed 



multilevel algorithm had a far better convergence. 

The first optimization step explored only parameters 

gm1 and C1, as they have a dominant influence for the 

approximation error ε < 10%. The range gm1 = 

(380uA/V, 420uA/0V) and C1 = (8pF, 12pF) was 

identified as an attractive region. The rest of the 

space for the gm1 and C1 values was pruned. The 

second optimization step used the complete model of 

the filter, including layout parasitic. The search 

concentrated only on the attractive regions for gm1 

and C1. In this case, the algorithm converged quite 

rapidly to the solution with the response in Figure 8. 

 

Fig. 

10 Layout of the 6
th

 order filter 

 

Figure 10 shows the layout obtained for the 6-th 

order filter, the larger example. The AC response of 

the filter synthesized without considering parasitic 

capacitances had its 3dB point shifted by about 

100kHz. This was clearly different from the required 

response, which was set at 300kHz. AC response was 

very much improved when considering the layout 

parasitic during synthesis. Algorithm convergence 

was better than for flat optimization. Finally, Figure 

11 shows the signal-to-noise ratio (SNR) and 

dynamic range (DR) plots of the second-order Σ∆ 

ADC synthesized with the layout aware method. 

Maximum SNR is about 49 dB and DR is 64 dB.   

 

VI. CONCLUSIONS AND FUTURE WORK 

 

This paper presents a new multilevel optimization 

algorithm for layout-aware synthesis of analog 

systems. The synthesis method integrates block 

parameter search, block placement, and global 

interconnect routing, while maintaining an accurate 

perspective on layout parasitic. Multilevel 

optimization conducts a sequence of exploration 

steps, in which each step uses performance models of 

superior accuracy, while searching reduced 

parameter domains. The foundation of the algorithm 

is global non-linear optimization. Using a rigorous 

motivation, the paper defines original techniques for 

parameter abstraction, abstraction error evaluation, 

and design space pruning.  

 

Experiments motivate the generality of the method, 

as it can be used for synthesis of different application 

types, like filters and ADCs. Produced designs offer 

good performance quality and layouts are compact. 

Most importantly, multilevel optimization offers a far 

better convergence than traditional, flat optimization.  

  
Fig. 11 SNR and DR for the second-order  

Σ∆ converter 
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