

LAYOUT-AWARE ANALOG SYNTHESIS BASED ON MULTI-LEVEL OPTIMIZATION,

PERFORMANCE MODEL APPROXIMATION AND SOLUTION SPACE PRUNING

Hua Tang, Hui Zhang and Alex Doboli

Department of Electrical and Computer Engineering,

Stony Brook University (State University of New York), Stony Brook, NY, USA

Email: adoboli@ece.sunysb.edu.

Abstract: This paper presents a new multilevel optimization algorithm for layout-aware

synthesis of analog systems. The synthesis methodology integrates (1) block parameter

search, (2) block placement, and (3) global interconnect routing while maintaining an

accurate perspective about layout parasitic. Multilevel optimization conducts a sequence

of exploration steps, in which each step uses performance models of superior accuracy

(with respect to the previous steps), while searching reduced parameter domains. The

paper defines original algorithms for design parameter abstraction, abstraction error

evaluation, and design space pruning. Theoretical and experimental results show a

superior convergence of the multilevel algorithm ascompared to flat exploration.

Execution time is also much improved without trading-off quality.

Keywords: electronic design automation, analog system synthesis, optimization.

1. INTRODUCTION

The need for mixed-signal designs is predicted to

dramatically increase in the near future (Gielen,

2000). The digital part of mixed-signal systems can

be efficiently designed with a low effort using

modern high-level, logic-level, and physical-level

design automation tools. In contrast, there is a lack of

synthesis environments for analog circuits (Gielen,

2000). As a result, analog designs continue to seize a

considerable portion of the design time of mixed-

signal systems. There is a persistent need for

synthesis tools to level design productivity and

quality of analog circuits. This paper presents a novel

method for analog system synthesis under close

observation of layout parasitic.

Existing CAD methods for analog circuits mainly

focus on layout generation (Cohn, 1991, Lampaert,

1999, Malavasi, 1996) and circuit sizing (Dhanwada,

1999, Krasnicki, 1999, Kruiskamp, 1995,

Hershenson, 2001). Layout design tools follow an

optimization-based place-and-route approach, in

which layout is generated by an optimization process,

e.g., simulated annealing, genetic algorithms etc.

driven by a cost functions expressing criteria, such as

performance degradation, total wire length, area, and

so on (Cohn, 1991, Lampaert, 1999). However, it is

possible that the fixed transistor sizes do not leave

enough performance margins to accommodate

layout-induced performance degradations. In this

case, the final design is incorrect. Costly re-iterations

through circuit sizing and layout generation are

needed to get constraint satisfying designs.

Circuit sizing techniques find the transistor

dimensions that optimize the performance

requirements expressed by the designer (Krasnicki,

1999, Kruiskamp, 1995, Hershenson, 2001, Ochotta,

1996). Hershenson et al. (Hershenson, 2001) propose

GPCAD environment, which optimally sizes

transistors using geometric programming methods

and performance models expressed as posynomial

functions. MAELSTROM (Krasnicki, 1999), among

others, employs genetic algorithms and SPICE

simulation for transistor sizing. A main limitation of

traditional circuit-sizing methods is the assumption

of having minuscule layout parasitic, so that it can be

disregarded. This is not, however, the case for many

applications (Crols, 1995, Dessouky, 2001, Hastings,

2001, Vancoreland, 2001). Layout-induced parasitic,

i.e. interconnect parasitic and device couplings

through substrate, have a significant impact on

performances of high-speed, high accuracy analog

and RF circuits (Hastings, 2001). Performances of

these circuits, after layout-parasitic extraction, might

not meet the constraints. A tight integration of system

synthesis and layout design is compulsory for having

realistic estimations of layout parasitic.

A possible layout-aware synthesis approach would be

to combine the sizing and layout design steps as part

of the same exploration loop. This strategy is called

flat exploration. The main difficulty of this

methodology is its poor convergence due to the many

variables that need to be simultaneously optimized

over large domains of values. A typical example such

as the 6-th order filter involves around 190 variables.

Similar to other work (Dhanwada, 1999), our

experiments with flat exploration methods showed

poor convergence and long exploration times for a

significant number of applications. Krasnicki et al.

(Krasnicki, 1999) propose a distributed genetic

algorithm to tackle the complexity of the solution

space. While offering speed-up, this approach does

not address the poor convergence of typical heuristic

algorithms for problems with large number of

variables.

This paper presents an original multilevel

optimization algorithm for synthesis of analog

systems. The algorithm performs combined block

parameter search, block placement, and wire routing

under strict observance of layout parasitic. To

address the large complexity of the solution space,

the algorithm conducts a sequence of optimization

steps, where each step uses performance models of

superior accuracies (with respect to the previous

steps), while searching reduced parameter domains.

Accuracy differs because distinct number of

parameters is used in the models. The first

optimization step starts with the coarsest

performance models, thus having the least number of

parameters. Based on the approximation error of the

models, this step prunes unattractive parameter sub-

spaces. The pruning criterion was defined such that

eliminated subspaces do not include attractive design

solutions, even if detailed models were used. Then,

multilevel optimization proceeds with (1) gradually

considering performance models with superior

accuracies (thus, involving more parameters), while

(2) searching parameter values located in the

contracted domains. Domain contraction is due to

pruning. To motivate the effectiveness of the method,

the paper presents design examples for which flat

exploration offered poor solutions, but which were

successfully handled by multilevel optimization.

The theoretical core of the multilevel optimization

algorithm is based on global nonlinear optimization

(McCormick, 1983, Walshaw, 2001). The originality

of the paper consists in refining the mathematical

theory for the context of analog synthesis. We define

criteria and algorithms for design parameter

abstraction, abstraction error evaluation, and space

pruning. The paper stresses on the theoretical aspects

of the algorithm, as preserving optimality during

multilevel optimization is critical. The convergence

of the algorithm is superior to that of flat exploration.

Execution time is also much improved.

Recently, there has been effort to combine transistor

sizing with layout design. Vancorenland et al.

(Vancorenland, 2001) discuss a layout-aware

transistor sizing method for RF circuits. A layout

template is assumed for a given circuit. Transistor

dimensions are flexible in the template, but the

placement and routing of the devices is already

decided. Dessouky (Dessouky, 2001) proposes a

similar approach. This technique is well suited for

predefined circuits, like mixers. However, if a new

application is targeted or a new circuit topology is

contemplated, it will take a large designer effort to

prepare the knowledge needed for synthesis. Our

method is not limited to one application type as

placement and global routing are part of synthesis.

This paper is organized as follows. Section 2

motivates the proposed multilevel optimization

algorithm. Section 3 details the theoretical basis for

the method. Section 4 introduces the synthesis

methodology and algorithms. Experiments are shown

in Section 5. Finally, Section 6 provides conclusions.

II. MOTIVATION

Fig.1 Variables with dominant and reduced influence

The main practical difficulty of synthesis through flat

optimization is the large number of variables that

need to be simultaneously explored over extensive

domains of values. For example, designing a 6-th

order filter up to the layout involves optimizing

around 196 real-domain variables (48 variables

describe OpAmp constraints, 6 variables are for

capacitors, 30 variables are for resistors, 48 variables

express placement, and 64 variables are for routing).

From the point-of-view of an optimization algorithm,

the large number of variables increases the size of the

neighborhood sets, as many incremental changes can

be defined for each iteration. Secondly, many

exploration steps need to be performed to reach an

optimal solution from a given solution point. This

decreases the rate of convergence of the exploration

algorithm. In fact, it is very likely that many of the

local optima are never reached during the search.

Parallel and multilevel exploration methods are two

orthogonal ways to tackle these difficulties.

Parallel optimization algorithms divide the variable

domains into subsets, and allocate each solution

space region to a different processor (Reeves, 1993).

Assuming that there exists true data parallelism for

the synthesis problem, a theoretical speed-up of m is

achieved by using m processors as compared with

flat optimization. Real speed-up is smaller, as data

(local optima) need to be constantly exchanged

between processors. While offering speed-up, the

main limitation of parallel optimization algorithms is

the extra hardware and software cost they require.

Fig. 2 Third-order elliptic filter

Multilevel optimization addresses the problem of

solution space complexity by distinguishing the

search variables based on their impact on the

optimization and constraint functions. Using the

transfer function of a system or designer knowledge,

variables are grouped into (1) variables with

dominant influence and (2) variables with reduced

influence. Sensitivity analysis can be used to identify

variables with dominant influence.

For the elliptic filter in Figure 2 (Ray, 2002), Figure

1 shows the variables with dominant and reduced

influence. The transfer function of the filter is

H(s)=[gm1gm2gm3-gm1C2C3ϖ
2]/[gm1gm2gm3+ gm2gm3gm4

+gm1C2C3 ϖ2+ (gm2gm3C_1 - C1C2C3 ϖ
2) s] (Ray, 2002).

The left graph in Figure 1 presents the filter

amplitude as a function of frequency and gain gm1.

The right graph in Figure 1 shows the filter amplitude

as a function of frequency and gain gm1, if the

transfer function is approximated to H'(s) = (gm1) /

(gm1 + C1 s). This is a reasonable approximation for

the frequency range f ∈ (1,10
8
) Hz. Note that

function H'(s) preserves the shape of the original

function H(s), such that optima are located in the

same region. Thus, variables gm1 and C1 have a

dominant influence.

Multilevel optimization concentrates first on

addressing the variables with dominant influence.

The number of searched variables is significantly

reduced as compared to flat optimization, because

variables with reduced influence are abstracted. The

exploration process isolates regions, which are

attractive (e.g., they contain good local optima), and

prune non-competitive regions (e.g., their local

optima are much worse then the optima of other

regions). Then, abstracted variables are gradually

introduced-back to the exploration space. However,

the exploration algorithm focuses only on the

attractive regions, thus, on a smaller space. This

strategy improves the convergence of the

optimization without perturbing the quality of the

search. For the discussed example, multilevel

optimization first explores the dominant variables

gm1 and C1 over their entire domain to identify the

space regions where the filter response is

satisfactory. For example, the region for gm1 < 0.3

µA/V is pruned as the cost is high. Then, reduced

influence variables are gradually re-introduced into

the estimation model, while exploration concentrates

on the attractive regions found during previous

exploration steps. Through intelligent search,

multilevel optimization speeds up execution and

improves convergence without using more hardware

and software resources than flat exploration.

III. MULTILEVEL OPTIMIZATION

Fig. 3 Multilevel optimization

Using the concept of dominant and reduced influence

variables, Figure 3 offers an intuitive description of

multilevel exploration. Lets assume that the function

z = f(x, y) is to be optimized. Assuming that variable

y has a reduced influence for a tolerable error, an

approximation z' = f'(x) of function f is obtained by

abstracting variable y. Figure 3 shows the curve of

the abstracted function f'. Function f' is used to

identify attractive regions of the solution space, and

prune less promising regions, as shown in Figure 3.

A subsequent exploration step will explore for the

optima of the initial function f by concentrating the

search on the attractive regions found during the first

step. This section discusses the theoretical foundation

of the multilevel optimization algorithm.

3.1 Dominant and reduced influence variables,

approximation errors, attractive and pruned regions

Definition: Variable xi ∈(x
min

i, x
max

i) has a reduced

influence on function F(x1, ... ,xn) with respect to the

approximation error ε > 0, if for any constant x
c
i ∈

(x
min

i, x
max

i), the relationship ||F(x1,x2,..., xi, ... ,xn) -

F(x1,x2,..., x^
c
i, ... ,xn)|| < ε holds. Variable xi has a

dominant influence on F(x1, ... ,xn) with respect to

error ε > 0, if it has not a reduced influence.

For the filter in Figure 2, variables gm1 and C1 have a

dominant influence, and variables gm2, gm3, gm4, C2,

C3, and the layout parasitic have a reduced influence.

The error range introduced by eliminating a variable

from function F, can be estimated based on the

function and the variable domains of F. We assume

that function F(x1,...,xn) has bounded first order

derivates (∂F/∂ xi ∈ (L
min

i, L
max

i), and xi ∈ (x
min

i,

x
max

i), which denotes its feasibility range. Values

x
min

i, x
max

i > 0, because they are physical dimensions.

Lemma: The error ε introduced by eliminating

variable xi from function F is ε ∈ (min {L
min

i × x
min

i,

L
min

i × x
max

i}, max {L
max

i × x
max

i, L
max

i × x
min

i}).

Proof: The elimination of xi assumes that ∂ F /∂ xi in

the Taylor series of F disappears, which results in the

mentioned approximation error. The lemma

considers the cases where bounds L
min

i and L
max

i can

be both positive and negative.

Definition: For a given a permutation σ (m) of m

numbers in the set {1, ..., n} , F
σ (m)

 (x1,...,xn) is the

function obtained through eliminating variables xi,

where indexes i are defined and appear in the same

order as the integers in the permutation σ(m).

For example, if σ(3)={3, 1, 4} then F
σ (3)

 (x1,...,x5) is

the function obtained after eliminating x3, x1 and x4.

Lemma: For a given a permutation σ (m), the error of

the corresponding abstraction is ε = ||F
σ (m)

 (x1,...,xn) -

F(x1,...,xn)|| ∈ (∑σ(m) min {L
min

i × x
min

i, L
min

i × x
max

i},

∑σ(m) max {L
max

i × x
max

i, L
max

i × x
min

i}).

Proof: Proof is based on the cumulative effect of the

errors introduced by each variable abstraction.

Lemma: Let ε1 ∈(L
min

, L
max

) be the approximation

error of F
σ (m)

. Point o1 is assumed to be the unique

local minimum of F
σ (m)

 for the subspace R1. Point o2

is assumed to be the unique local minimum of F
σ (m)

for the subspace R2. Without loosing optimality,

subspace R1 can be pruned from the search space, if

o2 < o1, and o1 + L
min

 > o2 + L
max

.

Proof: Refer to Figure 3 for an illustrative example.

The intuition behind the proof is that point o1 is

worse than point o2 by a margin greater than the

maximum error introduced through the abstraction.

Thus, point o1 cannot become better than point o2

under any circumstances.

This lemma is very important for stating the

conditions under which space pruning can be

conducted without affecting optimality.

3.2 Multilevel optimization through variable

approximation and space pruning

Figure 4 presents the pseudo-code of the multilevel

optimization algorithm. The multilevel synthesis

strategy can be defined for any number of levels. The

strategy starts from a detailed optimization and

constraint functions and the complete solution space

SP. Then, the technique classifies free variables into

those with dominant and reduced influence (lines 2-

4). A sequence of variable abstractions is defined

after this step (line 5).

The second part conducts a sequence of explorations.

It starts with the most comprehensive abstraction

(line 6), identifies attractive regions, and prunes non-

optimal zones. Lets assume that subspaces R1 and R2

are isolated during the search, each of them

containing one local optima (thus the function is

convex over Ri). Point oi is the local optimum for

region Ri, i=1,2. If o1 + L
min

 > o2 + L
max

, subspace R1

can be pruned without altering the optimality of the

problem. Range (L
min

, L
max

) is the approximation

error of the current performance model. Region R2 is

an attractive region, and region R1 is a pruned region.

By extending the reasoning for the entire solution

space, the strategy isolates a set of attractive regions

(line 9). Using the sequence of variable abstractions,

the algorithm identifies the next refinement in the

sequence (lines 10-11). The exploration process is

repeated using the refined function defined over the

set of attractive regions (line 8). The last iteration

performs an exploration of the attractive regions

using the non-approximated model.

PROCEDURE multi_level optimization IS

INPUT:

 F - function to be optimized

 Di- domain of free variable xi

 ε - maximum approximation error
BEGIN

(1) SP = D1 U D2 U ... U Dn;

(2) for all free variables xi do

(3) evaluate the approximation error

 introduced by abstracting xi in F;

 end for

(4) identify the set S of variables xi
 that can be abstracted so that the

 resulting total error < ε;
(5) order variables xi in set S in

 decreasing order of their dominance;

(6) F' = F
σ (i | xi∈S)

(x1, ..., xn);

(7) AR = SP;

(8) for all xi ∈ S, in their order in S do
(9) AR = identify the attractive sub-spaces of AR by exploring

 F' and pruning unattractive subspaces;

(10) S = S - xi;

(11) F' = Fσ (i | xi ∈ S)(x1, ..., xn);

 end for

END PROCEDURE

Fig.4 Multilevel optimization method

Lemma: The multilevel optimization algorithm finds

the global optimum, if pruned regions are convex.

Proof: As pruned regions are convex, they have a

single local optimum. Optimality is preserved due to

the lemma in Section 3.1.

3.3 Discussion

The speed-up of multilevel optimization with respect

to flat optimization depends mainly on the number of

variables that are approximated, and less on the

solution space reduction through pruning. The

motivation assumes that variables in function F(x1,

..., xn) can be abstracted through a set of m steps, each

step abstracting k variables. Also, lets assume that

each iteration decreases the size of the solution space

by a factor of q, q > 1. Finally, the complexity of the

algorithm to identify the local optima over a space of

dimension d is assumed to be of the order O(d
p
). Lets

assume that the most abstract function has n variables

(the first abstraction in the sequence). Finally, we

assume that each variable domain has the size l.

A flat exploration process has complexity CP1 = O((n

+ k × m × l)
p
). The multilevel exploration process

has complexity CP2 = O((n × l)
p
) + O(((n + k) ×

l/q)
p
) + (((n + 2 × k) × l/q

2
)

p
) + ... + O(((n + m × k)

× l/q
m
)

p
). The inverse of the speedup is CP2/CP1 =

∑i=0
m
 ((n + i × k)/(n + m × k))

p
 × 1/q

ip
. The first term

has the most dominant influence on the speed-up.

Thus, to maximize speed-up the first term should be

minimized, which corresponds to aggressive variable

abstraction rather than forceful domain reduction.

We considered a set of numerical examples to

evaluate the resulting speed-ups. In the initial case,

n=40, m=3, k=3, p=5, q=4/3. This example

corresponds to the second order filter example. Local

optima are identified with a polynomial algorithm of

complexity O(n
5
) (reasonable for an optimization

heuristics like tabu-search). The estimated speed-up

through multilevel optimization is around 1.8. If a

more aggressive parameter abstraction procedure

were to be used, such as n=20, m=4, k=5, p=5, q=

4/3, speed-up increases to about 13. If the pruning of

less attractive regions is more efficient, e.g., n=40,

m=3, k=3, p=5, q=2, then speed-up is around 2.56.

This offers a numerical explanation for the statement.

This discussion suggests that multilevel optimization

tends to be more effective in space exploration than

parallel implementations. Parallel implementations

realize a decreasing of the factor l, which is not part

of the speed-up formula. Nevertheless, smaller size

spaces tend to increase the value of q. The impact on

speed-up is probable less than for parallel

implementations. A parallel realization of the method

in Figure 4 further speeds-up optimization.

IV. SYNTHESIS METHODOLOGY

Figure 5 illustrates the proposed layout-aware

synthesis method. The methodology is an

instantiation of the multilevel algorithm in Figure 4.

It performs multilevel exploration for integrated (1)

block parameter search, (2) block placement, and (3)

global signal routing. System architectures are given

as inputs. Architectures are netlists of active circuits

i.e. OpAmps, OTA etc. and passive elements like

resistors and capacitors. Figure 2 shows a sample

architecture. The output consists of a sized, placed

and routed architecture that realizes the required AC

and transient behavior (like in Figure 10).

The methodology debuts with the step of finding

dominant and reduced influence variables. This

corresponds to lines 2-5 in Figure 4. The step

calculates symbolic expressions for the performance

attributes of a system. The models incorporate

parameters such as OpAmp (OTA) gains, dominant

poles, input/output impedances, resistor and capacitor

values, and interconnect parasitic. Compact linear

symbolic models are built using the method

presented (Doboli, 2001). A feasibility range

describes each of the architecture parameters. The

variable abstraction step uses the symbolic models

and feasibility ranges to calculate the error

introduced by eliminating each variable. Then,

variables are clustered, so that each cluster results in

the same approximation error. The error per cluster is

an input parameter to the algorithm. The variable

clustering method considers parameters in the

increasing order of the introduced error. Thus, initial

clusters will include more variables than the latter.

As motivated by the discussion in Section 3.3, this

strategy offers the best speed-up for the multilevel

optimization, because it allows quick pruning of

unattractive subspaces. Subsection 4.1 more details

on the variable abstraction method.

The next part instantiates lines 6-11 in Figure 4 for

layout-aware analog synthesis. The initial exploration

is conducted using the maximum variable

elimination, thus models with highest approximation

errors. Successive exploration re-introduces variables

according to the clustering found by the variable

abstraction step. The actual exploration algorithm is

based on the tabu-search method (Reeves, 1993).

Subsection 4.2 discusses the design steps performed

by tabu-search.

Using layout parasitic modeling (Hastings, 2001),

and technology-dependent values for the parasitic

resistance and capacitance per unit length, a SPICE

description of the circuits is generated. This circuit

includes layout parasitic. AC and transient

performances are obtained for each solution through

SPICE simulation. Performances are used to

calculate a cost function C, which controls the

exploration algorithm for synthesis.
C = ∑i αi × ||(Performance

obtained
i-

Performance
desired

i) /Performance
desired

i|| +

β × Areasystem

Cost function C is the weighted sum of the relative

error for performance parameters (i.e. DC Gain, 3db

Bandwidth etc.) and the silicon area of the design.

Each exploration level identifies attractive

exploration regions and prunes unappealing sub-

spaces. Subsection 4.3 discusses this task. Attractive

regions are used by the subsequent explorations that

involve more design parameters.

Fig. 5 System synthesis methodology

4.1. Identification of Dominant and Reduced

Influence Variables Through Abstraction

The variable abstraction sequence is constructed in a

greedy way. First, the method calculates for each

variable the error resulting, if the variable is

eliminated from the model. The variable that offers

the smallest error is introduced first into the

abstraction sequence. This variable has a reduced

influence. An abstraction of the initial function is

obtained after eliminating the variable. Then, this

function abstraction is used to identify the variable

with the next smallest error. A new abstraction is

built after eliminating this variable. The algorithm

ends when the resulting error higher than a specified

error. Variables that were not abstracted have a

dominant influence. The abstraction sequence is

used to cluster the variables, so that each cluster

results in the same approximation error. Note that the

greedy strategy balances between an aggressive

variable elimination and the effectiveness of solution

space pruning. More aggressive abstraction increases

the error range, thus, reduces the possibility for

pruning. However, as shown in Section 3, variable

abstraction offers better speed-ups than pruning.

The approximation error calculation finds the error

resulting after eliminating variable xi from the

optimization and constraint functions of a system.

The error is bounded considering that the function

variables are bounded too. We propose an

approximation error calculation scheme, which uses

the symbolic expressions of the system performances

and constraints. Symbolic expressions are used for

range calculation through operations on intervals.

4.2. Design Exploration

At each iteration, the tabu-search algorithm explores

three design steps that are shown in Figure 6:

• Block parameter search is achieved by changing

dimensions h and w of the active part of the

layout tiles for a block. This step is presented in

Figure 6(a). For example, the values of

resistances and capacitances change to improve

the AC performances of a filter, like its 3dB

bandwidth. For resistors, resistances depended

on the area according to the formula Rseg =

ρl/(wt). For capacitors, capacitances depend by

the expression Cseg = εoxwl/tox. For OpAmps, we

assumed a fixed but sufficient DC gain of 60dB

and a fixed slew-rate (SR) of 1.6 V/µs.

Following model links the UGF of an OpAmp to

its area AreaOpAmp=171.91×UGF
0.2875

× SR
0.1688

.

• Block placement is addressed by moving one

block or swapping two blocks. As a result, the x

and y coordinates of the tile corner points for the

involved blocks are changed to reflect the new

situation. Figure 6(b) shows the swapping of

Block 1 and Block 2. The produced overlapping

is solved as shown in the right part of Figure

6(b). Affected nets are re-routed after each

change of block positions.

• Global routing is the process of finding an

ordered sequence of channels, so that source and

target terminals are linked together. The

algorithm randomly picks a channel P in the

sequence. The subsequence from the source

terminal to channel P remains the same. The

sequence from P to the target pin changes to

include a different global route. Block terminals

are assumed to be fixed on a given side of their

rectangle layout block. Exploring for good

terminal positions will extend our current work.

Fig. 6 Layout-aware block parameter exploration,

placement, and global routing

4.3. Attractive Sub-space Identification. Pruning

Section 3.2 motivates that the global optimality of

multilevel exploration is preserved, if pruned sub-

spaces are convex. Establishing the convexity of a

subspace is, however, difficult (McCormick, 1983).

Instead, we approximate the convexity subspace

identification problem by the condition that the

sampled points form a convex envelope. This

approximation criterion does not mathematically

guarantee the convexity of the subspace, thus, other

local optima might be located between the sampled

points. This section offers a criterion to estimate the

amount by which the sampled optimum might differ

from the real local optimum.

Figure 7 shows the subspace identification procedure.

The sequence of points x0, x1, ..., x7, x8 corresponds to

a convex envelope, and is detected during tabu-

search exploration. Lets assume that x0 is the current

point under investigation. Tabu-search attempts at

each step at changing each of the parameters

(variables a and b in Figure 7). Point x1 offers the

best improvement of the cost function, if only one of

the variables is changed. Similarly, the sequence of

points x2, x3 is produced until reaching the point x4,

which acts as a local optimum for the sampled points.

The sequence of points x5, x6, x7, and x8 corresponds

to the increasing slope of the convex region,

generated during tabu aspiration (Reeves, 1993).

Fig. 7 Sub-space identification

The subspace represented by the sampled points x0,

x1, ..., x7, x8 is described by the product SSP = (a
min

,

a
max

) × (b
min

, b
max

), where a
min

 = min (x0.a, ..., x8.a),

a
max

 = max (x0.a, ..., x8.a), b
min

 = min (x0.b, ..., x8.b),

and b
max

 = max (x0.b, ..., x8.b). xi.a indicates

parameter a of the point xi, and xi.b is parameter b of

the point. The cost function of point x4 approximates

the local optimum of the subspace SSP. The

procedure can be easily generalized for n parameters.

Lemma: For the subspace SSP, let fo be the local

optimum and fa the optimum found through the

presented sampling method. Let M be the maximum

value of the derivate of the cost function, and ε the

approximation error due variable elimination. Then,

|| fo - fa || < ε, if ∆parameter = ε/M.

Proof: The formula results from the Taylor expansion

of f. Intuitively, the lemma states that the parameters

need to be varied with small steps, if the function has

large variations, and with large steps, if the function

has reduced variations. Under these conditions, the

local optimum will be within a radius ε from the

optimum point fa found by the sampling process.

V.EXPERIMENTS

Experiments observed the effectiveness of our

method in synthesizing high-frequency systems. The

results were analyzed based on the quality of AC

responses and layout compactness. The accuracy of

the parasitic modeling was also considered. A third

order elliptic filter and a sixth order low-pass filter

are shown in the paper.

Fig. 8 AC response of the 12MHz elliptic filter

Experiments were run on a SUN 80 workstation. The

optimization of the 3-rd order filter needed about 300

iterations and 3 hours. The 6-th order filter required

about 1000 iterations and 20 hours.

Fig. 9 3rd order elliptic filter layout

The third order elliptic low-pass filter was

synthesized for a 3-dB bandwidth at 12 MHz.

Following values resulted for the components:

C1=9.9pF, C2=90fF, C3=180fF, gm1=408 µA/V,

gm2=387µA/V, and gm3=400µA/V. Parasitic

capacitances of wires have the same range of values

as capacitors C2 and C3. This motivates the need for a

combined sizing, placement, and routing. Figure 8

presents the frequency response of the filter. For the

specified bandwidth, note the good resemblance

between the specified and obtained AC response. The

response was worse for the filter designed through a

traditional method, which separated component

sizing, placement, and routing. The 3dB point was

shifted by about 3MHz. This indicates the impact of

layout parasitic on the performance of the design, and

thus, the need for contemplating parasitic and

coupling effects during synthesis. Figure 9 shows the

layout of the filter. The layout is fairly compact

The convergence for flat exploration was poor. The

cost function oscillated without finding reasonable

solutions. In our experiment, after 120 hours, the flat

synthesis was still not converging. The proposed

multilevel algorithm had a far better convergence.

The first optimization step explored only parameters

gm1 and C1, as they have a dominant influence for the

approximation error ε < 10%. The range gm1 =

(380uA/V, 420uA/0V) and C1 = (8pF, 12pF) was

identified as an attractive region. The rest of the

space for the gm1 and C1 values was pruned. The

second optimization step used the complete model of

the filter, including layout parasitic. The search

concentrated only on the attractive regions for gm1

and C1. In this case, the algorithm converged quite

rapidly to the solution with the response in Figure 8.

Fig.

10 Layout of the 6
th

 order filter

Figure 10 shows the layout obtained for the 6-th

order filter, the larger example. The AC response of

the filter synthesized without considering parasitic

capacitances had its 3dB point shifted by about

100kHz. This was clearly different from the required

response, which was set at 300kHz. AC response was

very much improved when considering the layout

parasitic during synthesis. Algorithm convergence

was better than for flat optimization. Finally, Figure

11 shows the signal-to-noise ratio (SNR) and

dynamic range (DR) plots of the second-order Σ∆

ADC synthesized with the layout aware method.

Maximum SNR is about 49 dB and DR is 64 dB.

VI. CONCLUSIONS AND FUTURE WORK

This paper presents a new multilevel optimization

algorithm for layout-aware synthesis of analog

systems. The synthesis method integrates block

parameter search, block placement, and global

interconnect routing, while maintaining an accurate

perspective on layout parasitic. Multilevel

optimization conducts a sequence of exploration

steps, in which each step uses performance models of

superior accuracy, while searching reduced

parameter domains. The foundation of the algorithm

is global non-linear optimization. Using a rigorous

motivation, the paper defines original techniques for

parameter abstraction, abstraction error evaluation,

and design space pruning.

Experiments motivate the generality of the method,

as it can be used for synthesis of different application

types, like filters and ADCs. Produced designs offer

good performance quality and layouts are compact.

Most importantly, multilevel optimization offers a far

better convergence than traditional, flat optimization.

Fig. 11 SNR and DR for the second-order

Σ∆ converter

REFERENCES

Cohn, J., et al. (1991). KOAN/ANAGRAM II: New Tools

for Device-Level Analog Placement and Routing,

IEEE JSSC, Vol. 26, pp. 330-342.

Crols, J., et al. (1995). A High-level Design and

Optimization Tool for Analog RF Receiver Front-

Ends, Proc. of ICCAD, pp. 550-553.

Dessouky, M. (2001). Design for Reuse of Analog Circuits,

Ph.D. Thesis, Univ. of Paris VI.

Dhanwada, N., et al. (1999). Hierarchical Constraint

Transformation using Directed Interval Search for

Analog System Synthesis, Proc. DATE, pp. 328-335.

Doboli, A., Vemuri, R. (2001). A Regularity-based

Hierarchical Symbolic Analysis Method for Large-

scale Analog Networks, IEEE Trans. Circuits &

Systems Part - II, Vol. 48, No. 11, pp.1054-1067.

Gielen, G., Rutenbar R. (2000). Computer Aided Design of

Analog and Mixed-signal Integrated Circuits, Proc. of

IEEE, Vol. 88, No. 12, pp. 1825-1852.

Hastings, A., The Art of Analog Layout, Prentice Hall,

2001.

Hershenson, M., et al. (2001). Optimal design of a CMOS

op-amp via Geometric Programming, IEEE Trans.

CADICS, Vol.20, No.1, pp. 1-21.

Krasnicki, M., et al. (1999), MAELSTROM: Efficient

Simulation-Based Synthesis for Custom Analog Cells,

Proc. DAC, pp. 945-950.

Kruiskamp, W., Leenaerts, D. (1995). DARWIN: CMOS

op-amp synthesis by means of a genetic algorithm,

Proc. DAC, pp. 433-438.

Lampaert, K., Gielen, G., Sansen W. (1999). Analog

Layout Generation for Performance and

Manufacturability, Kluwer Academic Publishers.

Malavasi, E., et al. (1996), Automation of IC layout with

Analog Constraints, Trans. of CADICS, Vol. 15, No.

12, pp. 1518-1524.

McCormick, G. (1983). Nonlinear Programming, J. Wiley.

Ochotta, E., et al. (1996), Synthesis of high-performance

analog circuits in ASTRX/OBLX, IEEE Trans.

CADICS, Vol. 15, pp.273-294.

Ray, R., et al. (2002). Efficient Synthesis of OTA Network

for Linear Analog Functions, IEEE Trans. CAD, Vol.

21, No. 5, pp. 517-533.

Reeves, C. (1993). Modern Heuristic Techniques for

Combinatorial Problems, J. Wiley.

Vancorenland, P., et al. (2001), A Layout-Aware Synthesis

Methodology for RF Circuits, Proc. ICCAD, pp. 358-

362.

Walshaw, C. (2001), Multilevel Refinement for

Combinatorial Optimization Problems, Mathematics

Research Report, University of Greenwich, 01/IM/73.

